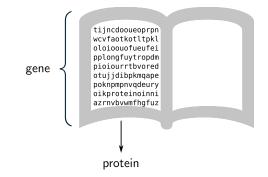
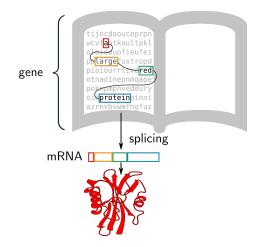
Des lectures aux transcrits méthodes *de novo* pour l'analyse du séquençage des transcriptomes de deuxième et troisième génération

> Camille Marchet sous la direction de Pierre Peterlongo

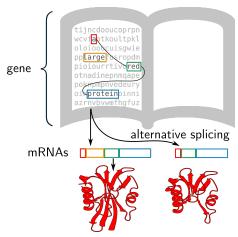
> > Congrès annuel de la SIF

5 février 2020




Introduction

- 2013 INSA de Lyon/Université Claude Bernard Lyon 1
 - Bioinformatics and Modeling
 - Ecology, Evolution, Biometrics
- 2013-15 Engineer in ERABLE team (Inria) LBBE Lyon
 - Software development
- 2015-18 PhD thesis in Informatics, GenScale team (Inria) IRISA Rennes, Université de Rennes
 - Algorithms for RNA sequences
- 2018- Postdoc in BONSAI team (CNRS) CRIStAL Lille
 - Data structures for sequence bioinformatics


Introduction - Messenger RNAs

Introduction - Messenger RNAs

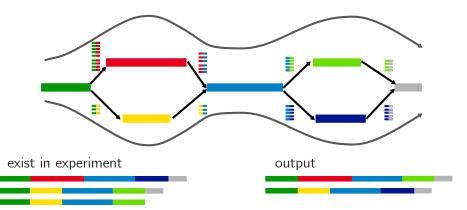
Introduction - Variability in messenger RNAs

There is a **combinatorial aspect** in messenger RNAs in eukaryotes (typically, mammals or plants)


Introduction - Sequencing technologies

- **Reads** are substrings from DNA/RNA, in a 4 lettres alphabet (called bases or nucleotides)
- One dataset can contain billions of reads
- Today we can sequence >1 petabases a day

Introduction - Short reads

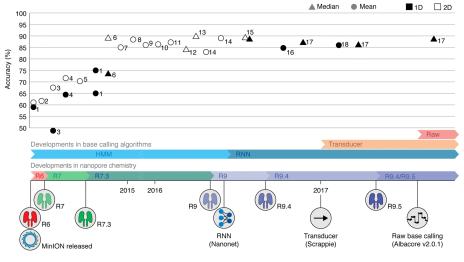

reads: shuffled short sequences (100 bases)

find order and overlaps (graph strategies)

final sequences (a few thousand bases)

Introduction - Issue with short reads

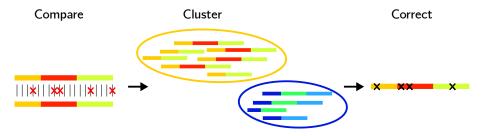
Introduction - Long reads


short reads

long reads

real sequence

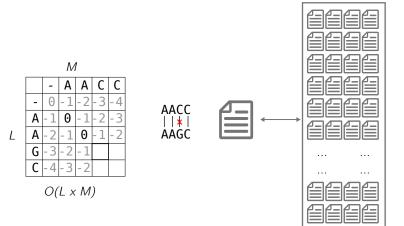
Introduction - Issue with long reads

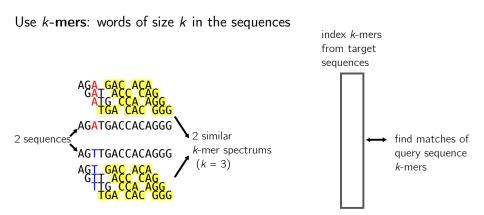


read AGGTGAATT•GC original sequence AG•TGACTTTGC

Introduction - Five challenges I was interested in

- Gene expression (different levels of RNA molecules)
- Combination of mRNA for a given gene
- Errors in long reads
- Scalability (millions-billions of reads)
- De novo (do not rely on sequences that are already known)

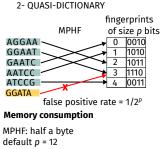



Sequence comparison - Compare RNA strings

Dynamic programming algorithm (Needleman & Wunsch, Smith & Waterman)

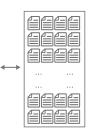
non scalable to this problem:

Sequence comparison - Heuristics to compare DNA/RNA strings

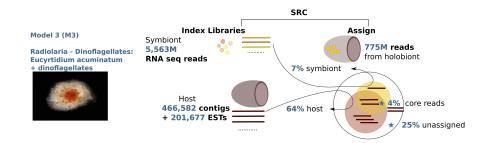


Sequence comparison - Our solution to compare sequences at scale

1- Minimal perfect hashing (no collisions, |image|=|input|)



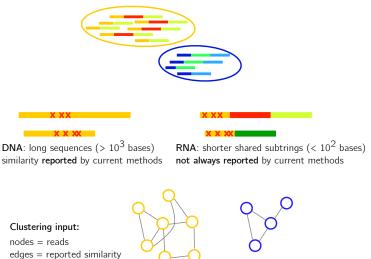
[Limasset et al. 2017]


~ 2 bytes/k-mer for a 0.02% FP rate

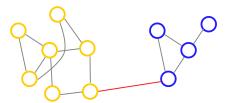
3- SHORT READS CONNECTOR

[Marchet et al. 2018]

Sequence comparison - Application to plankton


 \sim 7 hours and 40GB RAM [Meng et al. 2018]

Large scale sequence comparison


- Fast-expanding field: 18 papers and counting since SRC (data-structure improvements) for the indexation of collection of datasets problem
- We proposed an **exact data-structure** on top of the quasi-dictionary work
- Works well for short reads, still an ongoing work for long reads

Sequence clustering - The case of RNA long reads

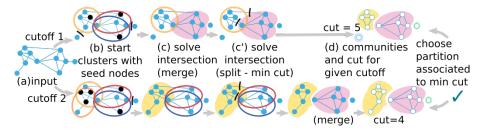
GOAL: 1 Cluster per gene

Sequence clustering - Community finding algorithms

Clustering input:

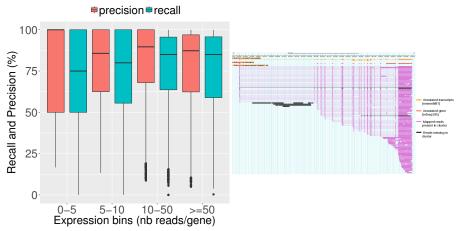
nodes = reads
edges = reported similarity

Expected: missing edges (badly connected quasi-cliques) very heterogeneous cluster sizes (gene expression) some spurious edges


	Recall (%)	Precision (%)	F-measure (%)	Jaccard index
Connected component	75.74	5.614	13.62	$7.3E^{-4}$
Modularity	60.70	71.16	65.51	$9.7E^{-2}$
CPM5	79.00	69.35	73.86	$3.5E^{-1}$
CPM50	49.21	89.92	63.60	$7.6E^{-2}$
Louvain	88.58	14.91	25.53	$1.1E^{-3}$

Sequence clustering - Our solution

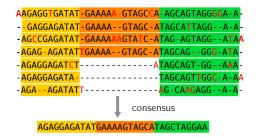
Intuition:


- ideal case = a clique per gene. Use the clustering coefficient θ as a connectivity metric
- we don't know in advance the number of clusters (k)
- mostly biologically sound edges find a minimum k-cut, NP-hard for \geq 3 [Dahlhaus et al. 1994]
- approximation of the solution: explore a restricted space for k
- explore local cutoffs for θ

Sequence clustering - Our solution

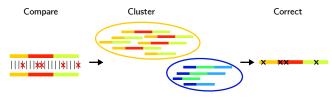
Software CARNAC-LR [Marchet et al. 2018]

Sequence clustering - Application to mouse data


\sim 500,000 long reads from a mouse

RNA Long Read Sequence clustering

- Independently, another similar method emerged just after we published [Sahlin et al. 2019]
- Next step: scalability, correction


Cluster by identical reads Cluster by gene

Correction - Segmented multiple sequence alignment

- We used the segmented multiple sequence alignment for long reads in two correction-related articles [Marchet et al. 2020, Morisse et al. 2019], notably we corrected human reads
- Very recently: a preprint with the same idea (gene clustering + correction) [Sahlin et al. 2020]
- Long read correctors are not well-tailored for RNA [Lima et al. 2019]

Conclusion

- Set of sequences indexation
- Sequence clustering
- Sequence correction by multiple alignment

Acknowledgments

SIF members / GenScale + Dyliss + Genouest teams / ANR ASTER / ANR Hydrogen / IBPS / Genoscope / TIBS team